Class-Uniformly Resolvable Group Divisible Structures II: Frames

نویسندگان

  • Peter Danziger
  • Brett Stevens
چکیده

We consider Class-Uniformly Resolvable frames (CURFs), which are group divisible designs with partial resolution classes subject to the class-uniform condition. We derive the necessary conditions, including extremal bounds, build the foundation for general CURF constructions, including a frame variant of the λ blow-up construction from part I. We also establish a PBD-closure result. For CURFs with blocks of size two and three we determine the existence of CURFs of type gu, completely for g = 3, with a small list of exceptions for g = 6, asymptotically for g = 4, 5 and give some other infinite families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class-Uniformly Resolvable Group Divisible Structures I: Resolvable Group Divisible Designs

We consider Class-Uniformly Resolvable Group Divisible Designs (CURGDD), which are resolvable group divisible designs in which each of the resolution classes has the same number of blocks of each size. We derive the fully general necessary conditions including a number of extremal bounds. We present some general constructions including a novel construction for shrinking the index of a master de...

متن کامل

Uniformly resolvable designs with index one, block sizes three and five and up to five parallel classes with blocks of size five

Each parallel class of a uniformly resolvable design (URD) contains blocks of only one block size k (denoted k-pc). The number of k-pcs is denoted rk. The necessary conditions for URDs with v points, index one, blocks of size 3 and 5, and r3, r5 > 0, are v ≡ 15 (mod 30). If rk > 1, then v ≥ k2, and r3 = (v−1−4 · r5)/2. For r5 = 1 these URDs are known as group divisible designs. We prove that th...

متن کامل

Asymptotic existence theorems for frames and group divisible designs

In this paper, we establish an asymptotic existence theorem for group divisible designs of type mn with block sizes in any given set K of integers greater than 1. As consequences, we will prove an asymptotic existence theorem for frames and derive a partial asymptotic existence theorem for resolvable group divisible designs. © 2006 Elsevier Inc. All rights reserved.

متن کامل

Linked system of symmetric group divisible designs of type II

The linked systems of symmetric group divisible designs of type II is introduced, and several examples are obtained from affine resolvable designs and mutually UFS Latin squares. Furthermore, an equivalence between such symmetric group divisible designs and some association schemes with 5-classes is provided.

متن کامل

Resolvable group divisible designs with block size 3

A group divisible design is resolvable if there exists a partition n = {P,, Pz, . .} of p such that each part Pi is itself a partition of X. In this paper we investigate the existence of resolvable group divisible designs with K = {3}, M a singleton set, and all A. The case where M = { 1) has been solved by Ray-Chaudhuri and Wilson for I = 1, and by Hanani for all h > 1. The case where M is a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2004